Safety switch

Series SHS3Z - ASI

Description ASI SHS3Z SA R

Operating diagram

Point of fixation is in range of $0^{\circ} \ldots 270^{\circ}$ free selectable.

$$
\begin{array}{ll}
\square & \begin{array}{l}
\text { Tolerances Switching angle (N.C.) }+/-1,5^{\circ} \\
\text { Tolerances Forced disconnect torque }+10 \% \\
\text { Tolerances Forced disconnect angle + } 2^{\circ}
\end{array}
\end{array}
$$

ece

Swivel range: 0° bis 270°

Technical Data

Electrical data		
Operating voltage	U	18 ... 31,6 V; via AS-interface, reverse-polarity proof
Operating current	I	$<40 \mathrm{~mA}$
AS-i Specifications		Profile S-0.B IO-Code: 0x0 ID-Code: $0 \times B$ ID-Code1:0xF ID-Code2: 0xE
AS-i Inputs		Contact 1: Data bits D0/D1 = static 00 or dynamic code transmission Contact 2: Data bits D2/D3 = static 00 or dynamic code transmission
Parameter bits		no function
AS-i Address		preset address: 0

Mechanical data	
Switch	PBT
Hinge	zinc die cast / nickel matt
Indication	LEDs for slave and bus state
Ambient air temperature	$-25^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$ (no freezing over/ no condensation)
Contact type	2 NC (slow-action, Zb)
Mechanical life	10^{6} operating cycles
Switching frequency	Max. 300 operations/h
Mounting	$4 \times \mathrm{M} 6$ screws DIN EN ISO 7984 on flat and stiff ground
Connection	Plug connector M12 male
Plug connection	1: AS-i + 2: free 3: AS-i - 4: free
Weight	$\approx 0,65 \mathrm{~kg}$
Mounting position	any
Protection type	IP67 acc. to EN 60529
Switching angle	$\pm 3^{\circ}$ from fixation point for the N.C. contacts
Forced disconnect angle	$6^{\circ}+2^{\circ}$ from fixation point in both directions (for $0^{\circ}-3^{\circ}$ only in Plus-direction, for $267^{\circ}-270^{\circ}$ only in Minus-direction)
Forced disconnect torque	$1,5 \mathrm{Nm}$
Mechanical load (Forces see the illustration page 1)	$\begin{aligned} & \mathrm{F}_{\mathrm{R}_{1}}=\max .1200 \mathrm{~N} \\ & \mathrm{~F}_{\mathrm{R} 2}=\max .500 \mathrm{~N} \\ & \mathrm{~F}_{\mathrm{A}}=\max .1200 \mathrm{~N} \\ & \hline \end{aligned}$

Standards	
VDE 0660 T100, DIN EN 60947-1, IEC 60947-1	
	VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1

EU Conformity
acc. to directive EMC

ID for safety engineering	
Electronics	MTTFd >100 years
	PFH $1,05 \times 10^{-9} 1 / \mathrm{h}$
Mechanics	B10d 2×10^{6} cycles

Notes

The degrees of protection specified (IP code) applies only to a properly closed cover and the use of an equivalent connector.
The safety guard shall always be mounted using two SHS3Z at least! See max. load. If the risk assessment of the machine permits a single-channel monitoring a blank hinge can used as bearing element.
High forces, unfavourable force application as well as dynamic loads can shorten the service life.
The manufacturer / supplier of the machine / equipment is obliged to take the applicable standards for the calculation of the safety distances of separating safety guards to hazardous areas into account.
Especially these standards apply: EN 349, EN 953, EN 1088, DIN EN ISO 13857,
The switch shall not be used as a mechanical stop.

