Safety switch

Series Safety Hinge Switch SHS

Description SHS-A1Z-SA-180

Circuit diagram

Operating diagram

Fixing point fixed at 180°

Tolerances:

switching angle (opening) $+2,0^{\circ} /-1,5^{\circ}$, direct opening torque 10%, direct opening angle $+0,5^{\circ} /-3^{\circ}$
Switching angle hysteresis
(closing the N.C. contact -1,0 ${ }^{\circ}$)
from the hinge's typical switch-off point

Connection

Illustration with fixed shaft and sheared-off set screw.

Electrical Data		
Rated insulation voltage	U_{i}	250 V
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	$2,5 \mathrm{kV}$
Conv. thermal current	$\mathrm{I}_{\text {the }}$	3 A
Rated operational voltage	U_{e}	$230 \mathrm{~V} \mathrm{AC} / 60 \mathrm{~V} \mathrm{DC}$
Utilization category		$\mathrm{DC}-13,60 \mathrm{VDC} / 0,5 \mathrm{~A}$
Direct opening action	Θ	acc. to IEC/EN 60947-5-1, annex K
Short-circuit protective device		Fuse 4 A gG
Protection class		SELV

Mechanical data	
Enclosure	$\mathrm{GD}-\mathrm{Zn}$
Cover	$\mathrm{GD}-\mathrm{Zn}$
Wing	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ambient air temperature	1 Change-over
Contact type	1×10^{6} operating cycles
Mechanical life	max. 1200 switching operations / hour
Switching frequency	$4 \times \mathrm{M} 6$ screws DIN 7984 or DIN 6912
Attachment	plug M12 x1, metal thread
Connection type	$\approx 0,4 \mathrm{~kg}$
Weight	operator definable
Installation position	IP 67 in acc. with IEC/EN 60529
Protection type	$+/-3^{\circ}$ from fixing point
Switching angle	$+/-10^{\circ}$ from fixing point
Direct opening angle	$1,5 \mathrm{Nm}$
Direct opening torque	$\mathrm{F}_{\mathrm{R} 1}=$ max. 1000 N
Mechanical load	$\mathrm{F}_{\mathrm{R} 2}=$ max. 500 N
(see dimensioned drawing for the	
introduction direction of the forces)	$\mathrm{F}_{\mathrm{A}}=$ max. 750 N

ID for safety engineering	
B10d	2×10^{6} switching cycles

Standards	
	VDE 0660 T100, DIN EN 60947-1, IEC 60947-1
	VDE 0660 T200, DIN EN 60947-5-1, IEC 60947-5-1
DIN EN ISO 13849-1	

EU Conformity	acc. to directive 2006/42/EC

Approvals	
	${ }^{2} \mathrm{CSA}_{\text {Us }} \quad \mathrm{C} 300$

Notes

The safety fixture must always be attached by at least two SHS! See max. load.
If the risk assessment of the machine permits a single-channel evaluation, an empty hinge can be used as the support element.
If the SHS is used at an ambient temperature of $70^{\circ} \mathrm{C}$, it is possible that the connecting cable will age more rapidly!
The connecting cable must be protected against mechanical damage.
The cable can be installed in tubes or cable ducts.
The manufacturer / supplier of the machine / system is obligated to observe the applicable standards for the size of the safety intervals between the separating safety fixture and the hazard point.
These regulations include: EN 294, EN 349, EN 953, EN 1088,
The switch may not be used as a stop.
For a CSA/UL application it is essential to use CSA/UL approved cable for connection.
The suggested protection type (IP code), applies only when at least an equivalent cable coupling is used.

